ENTROPY LAYER IN THE PROBLEM OF HYPERSONIC
FLOW OVER THIN BLUNT BODIES WHICH ARE CLOSE
TO TWO-DIMENSIONATL
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In the problem of the hypersonic flow of a nonviscous thermally nonconducting gas over thin
blunt bodies which are close to two-dimensional the solution is constructed ia the entropy
layer. The construction is achieved by a generalization of the method developed in [1] in ap-~
plication to bodies close to two-dimensional. The use of an approximate model identifying

the effect of the blunting on the gas with the effect of a concentrated force distributed over

the edge is important in the construction., The solution is represented in the form of asymp~
totic expansions. The equations of the hypersonic theory of small perturbations, which is the
null approximation in the process of construction of the solution in the form of a series in
powers of a small parameter determined as the square of the relative thickness of the body or
the relative width of the perturbed region, are obtained in the null approximation in this case,
The surface of the blunt body proves to be singular for the null approximation, since the en~
tropy function p/p” grows without limit as the surface is approached, Theattemptto construct
the succeeding approximations leads to strengthening of the singularity. This necessitates the
use of the method of deformed coordinates (the PLG method). Basic to the latter is the remo-
val of the singularity, which is not inherent to the exact solution of the problem, through asymp-~
totic expansions with respect to a small parameter not only of the unknown variables, but also
of the independent variables, with the subsequent determination of the deformation of the inde-
peudient variables on the basis of the "quenching" of the singularity. Use of the PL.G method
allows one to construct a solution which is uniformly applicable in the entire stream, including
the entropy layer. In practice, the construction of such a solution leads to the determination
of the displacement of the streamlines near the surface of the body, as a result of which the
singularity is "absorbed" by the body and the solution outside the body proves to be freed of
the singularity. In the null approximation this displacement of the streamlines can be deter—
mined in closed form,

Suppose a uniform hypersonic stream flows over a thin semi-infinite body blunted along the edge (at
the nose).

With respect to the shape of the body (Fig. 1) it is asswned that cos (n,1) ~ 74, cos (n, j) ~ T{i'”,
and cos (n, k) ~1 except for a small vicinity of the blunt edge (nose): 7, <« 1 is the small parameter and
v=20.1,

Here n is the normal to the surface of the body; Lx;, i = 1, 2, 3, is the rectangular Cartesian coordi-
nate system (L is the characteristic length); i, j, k are the unit vectors of the X, X9, and X5 axes, respec-
tively.

By introducing by analogy with [1j the small parameter 7= )/ (+v) [d is the characteristic thick-
ness (diameter) of theblunting] and limiting ourselves to the case of 7 ¢ T, we can examine the asymptotic
behavior of the solution in the vicinity of the surface of the body as 7— 0 on the basis of the perturbation
method, In this case we assume that the condition K = M T > 1 is satisfied,

Novosibirsk, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 3, pp. 74-81,
May-June, 1975, Original article submitted October 16, 1974,

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

371



The system of equations of gasdynamics in the variables "pres-
sure—two stream functions" has the form (2]
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Fig. 1

Here and below an index i > 3 should be understood as i — 3; pu Zp
is the pressure; pp is the density; u,uj are the components of the
velocity vector along the xj axes, respectively; Vpolle L@, Voou Ly are the stream functions; % is the ratio
of specific heat capacities of the gas, The vector of the velocity u,, of the undisturbed stream is directed
along the x; axis.

The boundary conditions at the shock wave have the form
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where V is the velocity vector; n is the unit vector of the normal to the surface of the shock wave,

The solution everywhere in the perturbed region is represented in the form

n=y;+vz+..., xgztv(yz-{—tzzz—{—...), @)
x3=r(y3+r2z3+...), p=po+73py+..., 9=n,
U =141 +74w...; uy=1 (v, wyt+...);

u3:’l7(v3+‘rzw3+...);_p=1;2(§+72p1+“_);
' Y=1"(T+12,+...).

The expansion with respect to 7, introduced in [3], for example, is performed in accordance with the orders
of the unknown values outside the entropy region,

By converting to the new independent variables ¢, g, ¢ in system (1) we obtain the following:

null approximation
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The expansions of the conditions (2) are obvious and are not presented here, The boundary condition
at the surface of the body in the null approximation has the form

ys=f(y1, ¥2) at [=0.

Another initial condition must be added to the system of equations of the null approximation [1]. By
analogy with [1] we assign the initial condition determining the effect of the blunting on the gas as a con-
centrated force distributed over the edge without allowance for the dimensions of the blunting. In the case
of ¥ =1 we are limited to the consideration of bodies with axisymmetric blunting washedhy a jet flow which
crosses the front in the vicinity of the blunting. The asymptotic representation of the shape of the front
in the vicinity of the blunting is known [4] in this case:

n=0Mm1% B-rE=25 y,=tgm)y,.

In the case of ¥ = 0 we are limited to bodies having a leading edge with a shape {x; = y4(n), %, =9,
%3 = TZ(n)} which has a small enough curvature as 7— 0 that, because of the nature of the blunting, the
density distribution of the concentrated force over the edge is a smooth function. The asymptotic expres-
sion for the shape of the front in the vicinity of the blunting for the upper part of the stream (¢ =0) is
given in the form

Y1=yo(n) +@(n, 0825 yy=n; yy=2Z(n)+-L.

It is analogous for the lower part (¢ =0), With the indicated limitations the shape of this front can be ob-
tained by the method of local sweepback [5].

Note. In the general case where the surface of the shock wave in the vieinity of the blunting has the
form

-
[
ve=tgMys; v=1; yi=yo(n)+d(n, 0)8;
Yo=1; Ya =)+ v =0,

the expansions (3) are inapplicable for the study of the behavior of the solution in the entropy layer if 0 <

@ <1 and 0 < g < 2/3, since no solution of the null approximation exists for these values of the param-

eters o and g {6]. If 1 <o <2 and 2/3< g7 < 1 then the expansions (3) constructed by the system de-

veloped below are not asymptotic with respect to the parameter 7 in the entropy layer. In the approximate

formulation of the problem, however, the shape of the shock wave in the vicinity of the blunting is universal

=1, 8=2/3, and the surface of the body in the null approximation is sharpened along the edge (the blunting

thickness is neglected). As will be shown below, in this case the expansions (3) are asymptotic with re-

spect to the parameter 7 in the entropy layer,

=M NG yi+yi=2
(

Using the arbitrariness in the system of equations of the first approximation, we will assume that
the function p is sufficiently smooth with respect to ¢ and we will determine it at the front in such a way
that the function ¢« in the boundary condition Pw = THE + szl +,..)% has the form £, = ¢y(y, £), i.e., does
not depend on 7. As for the function by, we will set @y (&g m, &) = 0, thereby excluding deformation by the
surface of the flow at the front,

Since the shape of the front is known,

i w—1 1 _ i/n 8 (1 —v)/% Afret/x .
e= o) () T e e s e s o, (6)

By representing the unknown sglutions in the form of asymptotic expansions with respect to the system of
functions Fpy;(¢), where Fry;Fplhy —~ 0as¢—0,j >, (m=1,..., T3 = lym, ..., =), we obtain:

a) v =0, null approximation

C’i?
y1=yw(E,n)+5&éaay~§‘°§+..., (7)

where yy, is an arbitrary function;
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The function f(c, g) determined above and its derivatives are taken with the values o = y;,, = n. The ex-
pression for the velocity v, has the form '

== (R + ) &+ (0,

To determine the behavior of the function v as ¢ — 0 we introduce in the latter equality ¢— &y(n, £). Using
the boundary conditions at the front.and the condition y;(«, 7, 0) = y,(n), we obtainy — 0 as £ — 0. Then we
can write the expansion of the function as

(8)

— '9!/10 g—i/u —i/x
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b) v=1, null approximétion. From (4) it follows identically that

adiy ol Wty g
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Seeking only functions y; which are bounded for small ¢ in accordance with the boundary conditions and
allowing for their identical boundedness as £ — 0 (except for ov,/8¢), we obtain 9y,/6n =0 at £ = 0. This
means that if the body is washed by a jet flow which crosses the wave front in the vicinity of the blunting,
then the pressure at the body in the null approximation depends only on the coordinate y;. The latter is a
reflection of the fact that in the corresponding two-dimensional nonsteady motion of a gas from a "powerful
explosion" the pressure gradient at the surface of the body is equal to zero at every moment t > 0 if the

gas density at the body is equal to zero.

With allowance for this, we have

yl“—‘ym(g) _!_yu;—;—,
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For the determination of the required functions we have the following system of equations:
A e (9y10) 7).
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where y,,(£) is an arbitrary function and f(a, ) is determined above. Both the function f and its deriva-
tives are taken with the values a =y, 8 =yy:
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One can show that for axisymmetric bodies y,;(6f/08) —y3 = 0, if ¥21 # 0 or yy # 0. Therefore, for bodies
which differ little from axisymmetric bodies we can set g = g(“" ~1im,

Following [1], we remove in the first approximation the boundary condition at the surface of the body
and set up the problem of determining the flow behind the shock wave obtained in the null approximation,

The expression for the density in the first approximation takes the form

R A LU LIIRRCT | A

Substituting the expressions for w, and p,/p, into the first equation of system (5) and reducing like terms,
we obtain the greatest singularity in the coefficients of the first equation in the case of j; =0. Therefore
we can chose the arbitrary function ¢ in such a way that the singularity in the coefficients of the first
equation is integrable, For this it is enough to set

o L (For ) = (B (1 ) B | B tigg) ag e 0,

x|~

The solution ot the latter equation with allowance for the condition %, =0 at ¢ = £ has the form
\Ti—~V _ . 19
b= — 507 () [%(1 + (g’,ﬁ—]) )} 4 0 (g, (12)

Determining the displacement of the flow surface y = 0, we obtain

txe 3o [5 (1 (2))] 7 = enmm.

Let us examine the behavior of the other functions,

c) v =0, first approximation. Using the null approximation, one can show that 3y,/8z ~£75/2 as ¢ —0
and ¢ - ¢,. From the latter and the boundary condition for z, (it is easy to show that zZ, =0 at £ = £;) it
follows that the arbitrary function r in the expression 2, = Sv2%dg+ n,0)
approaches zero as y — 0

o= [ (e ) sy ey 13)

Therefore, at the displaced surface ¢ = 72¢, we have the following distribution of the unknown functions:

e
(14)

— 5 — 9—9 .
Ty=n—Yi TR T2 4

&g % — a — .2
(et 8 e
Here the terms of order "1 ™ and higher are not written. The function f is taken with the values a =
Yio» B = n. The concrete form of the other functions, which have the order of u; ~1 + 0(727%/%), u, ~ 7Y

W~ T, p~7 " andp ~ 72 at the displaced contour, is not presented,

We note only that with such a choice of the function ¥y the expansions of the unknown values for ¢ =0
preserve the asymptotic properties with respect to the parameter 7. From the form of the funection Y it
follows that the "three-dimensional  effect in the distribution of the streamlines in the vicinity of the sur-
face of the body is caused by the deviation of both the shape of the edge and the shape of the body from a
flat shape.

d) v =1, first approximation. The asymptotic representation of the solution has the form
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n=gomax ({ F, g)+...; wy=w;y max (F, {¥%)+...;
2i=25F+...; wj=w;j, max (F, {%)4..., j=2.3.

If there are proper solutions of the type g = o(F) as ¢ — 0 (the function g is determined in the null approxi-
mation), then necessarily

Y30 Y30 ‘ .
on 230 T gy F2 0; 25955 0; 259 540.

The latter equation, as in the case of the null approximation, is not satisfied for bodies which are close to
axisymmetric, For them at the displaced surface we have

T =Y+ o 2= T(Yag -+ You L2,

=Ty Y

Here the terms of order ™(*=1)/% and higher are not written. The function f is taken with the values a =
Yig» B = ¥op. The concrete form of the other functions, which have the order of uy ~1 + 0(7*"2/%) u, ~ 1y ~
T, p~ 7Y M and p ~ 72 at the displaced contour, is not presented, The expansions with respect to the par-
ameter 7 for =0 preserve the asymptotic properties, and the problem of the determination of the dis-
placed contour and the distribution of the unknown values at it, if the function y,((¢) is known, is reduced to
the determination of the solution of the system of ordinary differential equations (10), (11).

Turaing to the expansions (3) and the results of the study of the first approximation, we can conclude
that the solution of the null approximation for a body with a displaced contour is free from singularities
and is uniformly applicable in the entire stream with a relative error on the order of 7 (H=1) /% . Thus, the
method used allows one to improve the solution at finite distances from the leading edge. In doing this the
asymptotie solution is set up in the entropy layer in accordance with Egs. (6)-(13), if the pressure distri-
bution over the body is known in the null approximation. As follows from (6)-(13), a slight variation in the
pressure in the direction orthogonal to the surface of the body is observed in the general case, If the body
is close to axisymmetric then the pressure at the deformed surface depends only on the longitudinal coor-
dinate x;, i.e., the entropy layer does not restrain the pressure drop in the circumferential direction.

In conclusion, let us examine the qualitative pattern of flow over a flat plate with the normal ortho-
gonal to the plane x; = 0. We set the number M,, equal to infinity and we take the shape of the blunting in
the form

Ty = £ (@3] + azy); 7, >0; (15)
0<<e<C1/2; 0Crp<Sn®; oy > 0.

The values 1/2 < € < 1 are excluded from consideration, since the condition of boundedness of the curva-
ture of the edge at the apex of the plate is violated in these cases. In the vicinity of the blunting we can
represent the shape of the shock wave calculated on the basis of the model with a concentrated force (New-
ton's equation was used to caleulate the latter) using the principle of local sweepback,

dyo\2 1172 RYE 16
w= e[+ ()] e -] “o
Here and below the expressions for the coefficients ¢; > 0 are not made concrete because of the awkward-
ness. The function y,(x,) is found from (15) with x, replaced by y,. The function y,,, which is easily re-
constructed from the pressure distribution over the body in the null approximation, has the form

B J z=q
I 2,
I ___/ za.;
1L %7% "
Fig. 2 Fig. 3
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Yo =Yy € [1 + (%Y]_i g9,

dzy

Eliminating the function Y(£, n) from (14), we obtain the equation for the shape of the displaced contour:

[ 2\ —1/3x

In application to the inverse problem, Eq. (17) describes the nature of the variation in the shape of the sur-
face of the body for a given shape of the shock wave (16). The qualitative nature of the variation in the
shape of the displaced contour in the plane x; = const is presented in Fig. 2 (I is the cross section of the
plate and I is the cross section of the displaced contour). Curve II, symmetrical relative to the coordinate
axes, is a monotonically decreasing function for x, > 0 and x; > 0 which does not have points of inflection

in the case when

L (3 o\?
3%+ (3n — 4) (dri) > 0.

The question of the presence of points of inflection in the general case requires a more detailed study of
Eq. (17).

Let us write the projections of the streamlines 5 = const of the displaced contour onto the plane x; = 0:

{ .
t+1/x) . dya dfg =212 | g—1/2—1f2_2—9u
=, bt AU S5 i,
Jn - fo [83 dxy € dzgy s E T ’
T, =y, 4 ¢, f E = (1 ()
l\ 1= Yyt 1fof I 1- s .

Taking 7 as a fanction of the coordinates x; and x, in them, we obtain 97/0%, <0, i.e., the gas flows out
from the plane of symmetry x, = 0, By examining the behavior of the pressure at the displaced contour
in the cross sections x; = a; (¢ are constants and aj < ajy), we can establish the presence of regions of
reduced pressure in the vicinity of the plane of symmetry %, = 0 (Fig. 3), which does not contradict the
results of [7, 8], In the case of ¢ = 1/2 these regions of reduced pressure originate near the apex, at a
distance equal to half the radius of curvature of the edge at the apex of the plate,
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